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What should a future photogrammetrist know about statistics and adjustment? 

Modern research on the adjustment of aerotriangulation blocks is very much 
directed to the analysis of the reliability of the photogrammetric poin~ 
determination. It is very likely that in the future the precision of this 
point determination will get new attention. This research will result in 
techniques for quality control of aerotriangulation and for groundcontrol. 
What should a future photogrammetrist know of statistics and adjustment to 
be able to work with these evaluation techniques, to understand the meaning 
of boundary values, of S-transformations and criterion matrices? At which 
level should he be educated for this? This paper is ment as a discussion 
paper and therefore tries to sketch the problems of keeping education of 
photogrammetrists up to date with research on the items mentioned. 

Derzeitige Untersuchungen im Bereich der Ausgleichung von Aerotriangulationen 
richten sich hauptsachlich auf die Zuverl~ssigkeitsanalyse der photogramme
trischen Punktbestimmung. Es is sehr warscheinlich dass kUnftig die Genauig
keit der Punktbestimmung neue Aufmerksamkeit erfahrt. Derartige U~tersuch
ungen werden in Techniken zur Qualitatskontrolle von Aerotriangulationen und 
Festpunkten resultieren. Was sollte ein zukUnftiger Photogrammetrist von 
Statistik und Ausgleichsrechnung wissen, um mit diesen Techniken arbeiten zu 
konnen, um die BedeutRng von Grenzwerten, S-Transformationen und Kriterium 
Matrizen zu verstehen? Diese Aufsatz ist als Diskusionsbeitrag gedacht und 
trachtet die Probleme aufzuzeigen, die Ausbildung von Photogrammetern auf 
den Hand der Forschung im erwahnten Bereich zu bringen. 

La recherche moderne sur la compensation de blocs d'aerotriangulation est 
tres orientee vers l 1 analyse de la surete de determination photogrammetrique 
de points. Il est tres probable que dans le futur cette determination de 
point attirera une attention nouvelle. Cette recherche aboutira ~ des tech
niques pour le controle de la qualite de l 1 aerotriangulation et du canevas 
terrestre. Que devrait connaitre un futur photogrammetre en statistiques et 
compensation pour etre capable de travailler avec ces techniques d 1 evaluation 
pour comprendre le sens de valeurs limi tes, de transformations "S-systemes" 
et matrices-critere? A quel niveau doit se situer l'enseignement sur ces 
sujets? Cet article vise ~ ouvrir la discussion et pour cela essaie d 1 esquisser 
les problemes pour maintenir la formation des photogrammetres ~ jour avec la 
recherche sur les sujets mentionnes. 



What should a future photogrammetrist know about statistics and adjustment? 

1 • On the future task of a photogrammetrist 

Before we answer the question in the title of this paper, firstly the tasks 
which a future photogrammetrist should be given will be described. Here we 
meet two problems 1 i.e. first 1 a descriptlon is required of the activities 
of photogrammetrists nowadays and second, one should be able to forecast 
how his field of activities will develop in the near future. These two 
problems are difficult or even impossible to overcome, and therefore the 
answer to the question cannot be found and we could conclude this paper 
with the statement : "We don't know". 
Yet the author would like to endeavour a more positive answer, but only 
when restricting himself to photogrammetrists involved in aerotriangulation, 
or rather photogrammetric point determination. In this field much effort 
has been made during the last two decades to solve the numerical problems 
which one had to face when using computers for the adjustment of observ
ations. Programmes are available now for the adjustment of independent 
model - or bundle-blocks. The photogrammetrist in practice only has to 
decide which programme fits best to his aims and facilities. 
This means that in the future he will be able (and has) to shift his 
attention to other problems which we will group under the heading "quality 
control". 
Two aspects of this quality control for aerotriangulation are considered 
here as the most important 1 these are the "reliability" and the "precision" 
of the photogrammetric point determination. The term reliability is used 
here in relation to the search for gross data errors and, eventually, 
systematic errors. In fact it expresses the probability of finding errors 
of a certain magnitude. A proper understanding can be best based on a good 
knowledg.e of the statistical theory of testing. This subject will be 
elaborated in section 2.2. 
When discussing the precision of coordinates, we talk in fact about their 
variance-covariance matrix. There one always meets the problem of how to 
decide whether the precision of a coordinate field can be considered as good 
or not. In modern research one tries to establish criteria for this decis
io~Section 2.3 will explain the theoretical b~ckground which is required 
to understand properly the formulation of these criteria. 

2. Theoretical background 

2.1 • General 

The need for quality control, as mentioned in the previous section, is 
caused by the fact that the observations in photogrammetry and geodesy are 
stochastic. We are lucky enough, however, that their stochastic behaviour 
can be described, with a sufficient degree of accuracy, by means of the 
normal distribution. The same fact is true for (linear) functions of the 
observations. So criteria for quality control can be developed starting 
from a good understanding of the characteristics of the multivariate normal 
distribution and its derived distributions, i.e.: Chi-square- and Fisher 
distribution. 
Within this framework it can be made clear why a least squares adjustment 
is preferable above other methods, as it leads to "best linear unbiased 
estimators" 1 i.e.: minimum variance- or maximum likelyhood estimators. 
A nice didactical aspect of normally distributed variates is that they can 
easily be interpreted as a set of coordinates in a linear space, from which 
the geometry of the coordinate base is given by the inverse of the co
variance matrix as a metric tensor [6J, [17] , [18]. In this interpret-



ation, linear functions of the observations can be considered as coordinate 
transformations. Least squares corrections to the observations then give 
the orthogonal projection of a point in the observation space into a sub
space defined by the unknown parameters of the adjustment. This interpret
ation is a useful tool especially if one wants to understand the meaning of 
null- and alternative hypothesis and the formation of best tests and the 
related reliability studies. 

2.2. Reliability studies 

In modern literature on aerotriangulation the expression "reliability" is 
almost exclusively used in relation to data-snooping, i.e. the detection of 
gross observational errors. Baarda originally introduced this term, however, 
in the field of geodesy within the much wider context of hypothesis testing 
[1)[2] • Moreover, reliability studies cannot be basically understood with
out a good knowledge of the statistical theory of hypothesis testing. The 
concept of boundary values is directly based on the concept of type I and 
type II errors. Let me explain this in some more detail. 
Let an adjustment be based on a set of condition equations formulated for 
the mathematical expertation of a set of observations x. In fact these 
condition equations 

..., 
~ ..... ) .. 

are an assertion about the expectation E{ ~d ~ of the observations. 
Such an assertion is called a null hypothesis Ho. One can never be sure, 
however, whether this H9 is true. So a test has to be formulated to decide 
whether the actual observations x are in agreement with Ho or not. 
Now two possible situations may occur : either one suspects a specific 
disturbing factor to cause conflict between the observations and Ho, or no 
special reason for such a conflict can be found. The suspicion that some
thing is wrong we call an alternative hypothesis Ha. An example of the 
first situation is the data snooping technique, which is based on a series 
of tests from which each is a test of Ho versus an alternative hypothesis 
in which one of the observations is suspected of being erroneous. Another 
example is found in tests for systematic errors [12.1 • In cases like these 
we talk about simple alternative hypotheses. 
In the second situation where no special alternative hypothesis has been 
formulated we talk about a composite alternative hypothesis. 
In most cases a test of Ho versus Ha will make use of a function of the 
observations, say Wi = W:i_ ( ••• ':1-- ••• ) for which the expectation under Ho is 
known i.e.: 

E { ![i 1 Ho} = W i 

Of course, any such a function can be used, like the condition equations 
mentioned before, but not everyone of these leads to an effective test. In 
fact we should search for a function which gives a "best test". But then 
the concept of a best test should be defined first. This can be done as 
follows : If the expectation E f !!:i I Ho} = wi is known and we know also that 

E ( ![i ' Ha} > Wi , then a test of Ho versus Ha is formulated as 

reject Ho if W. = W. ( ••• X ..• )>c. accept Ho if W. <C. 
-l l - l -l l 

called the critical value of this test. 

where C. is 
l 

From the distribution functions of the observations ~~ the distribution 
function of ~i can be derived. From the latter we find the probability 
for Wi ~ Ci , for the case where Ho is true, say Pr (~i~ Ci I Ho) = <X. 
In general there is a unique relationship betweeno< and C.which is normally 

l 
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used in the reverse way, that is : first ex is specified and then Ci is 
computed. o<. is the probability of a "type I error" 1 i.e. the rejection of 
Ho as false for the case where it is true. o<. is the significance level of 
the test. For a specified alternative hypothesis, Ha, the expectation of 
!his E { !h I Ha ! = wi + '\iWi and under this hypothesis we find 

Pr C~i~ cil Ha) = 0 i• ~his probability is the power of the test, i.e. it 
is the probability that Ha will be found for the case where it is true, 
while 1 - (3i is the probability that the test may fail to find Ha for the 
case where it is true, this is a "type II error". 
Now a best test for Ho versus Ha is given by that function Wp for which 
Pr (~p~Cpl Ho) = oi- 0 and Pr (Wp~Cpl Ha) = f3p with (3p~ (3i for all i. 
This rueans that a test based on !!P with significance level o<. has a power 
which is larger than or equal to the power of tests based on any other 
function Wi· So a best test here is identical to a most powerful test. 
[10][15J • 
For the case where no Ha has been specified, one will search for a function 
Wp which gives a best test for any Ha which could possibly be formulated. 
If such a function exists it leads to a "uniform most powerful test". .An 
example is the testing of the estimator for the variance factor computed 
after adjustment. 
The concept of most powerful tests is essential in the search for optimal 
testing procedures, especially when large sets of observations are involved. 
(see i.e.: [12] ). 
For a good understanding of the whole technique of hypothesis testing, after 
adjustment a student should see how a test for an individual alternative 
hypothesis, Ha, is related to the global test based on the estimator for the 
variance factor. When a geometric interpretation of least squares adjust
ment is given according to section 2.1, the variance estimator can be seep 
as the norm of the vector of the corrections to the original observations. 
The value of the test function for an Ha is then the length of the ortho
gonal projection of the vector of corrections onto another vector defined 
by the Ha ( [2] p.13). With this approach it is simple to understand why 
some tests are powerful and others are not. 
The concept of a type I error and a type II error are basic for the 
definition of the reliability of a testing procedure in terms of a "bound
ary value" and a power (3. • The "boundary value" is the difference between 
the expectation of a statistic under Ho and its expectation under Ha, where 
the test of Ho versus Ha has a power~ and significance level~ [1] . A 
best test can now also be defined as a test for which the boundary value is 
less than, or at most, equal to the boundary value of any other test of Ho 
versus Ha with a level of significance = IXc- and power = (3..,. In fact, Ha is 
now a composite alternative hypothesis. The geometric interpretation will 
be helpful again to show the relationship among the tail regions of several 
tests, and to show how their boundary values are related. 

2.3. The precision of geodetic pointfields 

The second aspect of quality control mentioned in section 1 of this paper 
has been known much longer than the reliability studies. The precision of 
coordinates in various types of pointfields, photogrammetric or geodetic, 
has been investigated by means of their covariance matrices and standard 
~llipses. It was not before 1973, however, that a consistent criterion 
theory for the precision of planimetric and height coordinates was publish
ed [3] . This publication was a further elaboration of directives for the 
reconnaissance of cadastral survey networks in the Netherlands. The basic 
idea is that one should not always try to reach the best possible precision 
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in a network by making the standard ellipses as small as possible, but one 
should set a criterion which is an upperbound for the precision to be ob
tained. Then a network can be designed so that the variances of the coor
dinates and of any function of the coordinates are always less than or at 
most equal to this upperbound. 
In his publication, Baarda realised that size and shape of point and relative 
ellipses and thus the covariance matrix of a network is dependent not only 
on the structure of the network but also on the choice of the coordinate 
system in which the points are computed. As this latter choice gives no 
information about the strength of a network, a measure for precision should 
be found which is independent of the coordinate system. Such an approach is 
possible if one refers to the precision of elements which are invariant 
under certain coordinate transformations, here similarity transformations. 
These invariant elements are called form-elements. In a planimetric network 
these are angles and ratios of length between sides. Using these, one can 
define geodetic pointfields which are ideal with respect to precision. 
In an ideal network the precision of angles and length ratios depends only 
on the size and shape of triangle from which they are taken and not on the 
actual position of the triangle in the point~~ield. 
The expression "homogeneous and isotropic inner precision" has been used 
for this situation in [14] . A covariance matrix for heights and one for 
planimetry satisfying this constraint have been developed in [3] . The 
real covariance matrix of a network can be compared now with such an arti
ficial, or, "criterion" matrix. To eliminate the effect of the choice of 
the coordinate system on this comparison, the concept of S-systems was 
introduced in [3] • The real and the criterion matrix should be computed 
in the same S-system. The concept of S-systems and a sketch of how the 
comparison is made is treated in [13] (a presented paper to comm. III at 
this congress). 
Coordinates computed in an S-system are functions of only the form-elements 
in a network and therefore their covariance matrix is a mere transformation 
of the covariance matrix of these form-elements. A comparison of this 
matrix with the criterion matrix by means of the generalised eigen-value 
problem (see [13] § 2.2) gives then results in terms of eigen-values, which 
are invariant with respect to transformations of the S-system. 
The link between Baarda's invariant elements and the statistical theory of 
unbiasedly estimable quanti ties was made in [ 9] and in[_ 14] . This made it 
simple to understand Baarda's approach from a statistical point of view and 
to develop his theory so that it could be applied in cases which were less 
transparant than the complex plane. In [14] the formulation of the criterion 
theory for the precision of geodetic pointfields, including the design of a 
criterion matrix in three-dimensional space, has been based on the concept 
of unbiasedly estimable quantities. Grafarend studied homogeneous and 
isotropic random fields and arrived for euclidian coordinates at a. covariance 
matrix which had great similarities with the matrix of Baarda. There, one 
might find a link between the criterion theory for precision and the theory 
of random fields and may be collocation techniques. 
Research in this field only started recently but one can expect that some 
results will be applied in practice rather soon. As for-the criterion 
theory for precision of planimetric coordinates, quite a lot of experience 
has been obtained during the last decade in the Netherlands. The result 
was a method for finding optimal network structures and for the classification 
of pointfields with respect to precision. A crucial point here is the choice 
of a covariance function for the criterion matrix, experience must show 
which functions fit best to give a description of the precision of several 
types of pointfields. 
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3. The education of photogrammetrists 

After this outline of what is involved in quality control for photogrammetric 
(or, in general, geodetic) point-determination, it is time to draw conclusions 
for the education of photogrammetrists. Although this paper only referred 
to photogrammetry, the same story is true for any method of geodetic point
determination. Moreover, the conclusions drawn here are equally valid for 
the training of geodesists in general. 
When discussing the education of photogrammetrists we will refer to two levels: 
At the first level (say B.Sc. level) a student should learn to compare survey 
and mapping methods and evaluate their output by means of quality control as 
explained in this paper. He should be able to make optimal use of existing 
methods. This requires some knowledge of the statistical theory of hypo
thesis testing, sufficient for the understanding of techniques for gross 
error detection, i.e. data snooping and the related reliability studies. 
For the analysis of the precision of point-fields he should know the meaning 
of covariance matrices and he should have a global idea of what criterion 
matrices are. The knowledge of point and relative standard ellipses will 
be very helpful to make him understand the generalised eigen-value problem 
for comparing a real covariance matrix with a criterion matrix. One should 
not require a full understanding of this problem, but only some knowledge of 
how it is applied in practice with a given criterion matrix, that is a matrix 
with a specified covariance function. So a student at this level should be 
able to apply evaluation techniques as i.e. described in [5] (pres. paper 
comm. III at the congress). 
At the second level (say M.Sc. level) a student should be able to perform 
the same task as given for the first level. But in addition to that he 
should be able to face new problems which cannot be solved with well form
ulated given techniques. In that case he must find his own solution using 
his scientific knowledge, which means that he has to design experiments, 
and measuring and testing methods. Therefore, a full understanding of the 
theory of hypothesis testing as explained in ·Section 2.2 is required. This 
should, of course, be based on a profound knowledge of statistical distributions 
(mainly the normal-, Chi-square- and Fisher distribution in the field of 
photogrammetry) and the theory of estimation, with emphasis on least squares 
adjustment. 
Besides the theory of testing, the student should pay attention to the 
analysis of covariance matrices in the sense of section 2.3. The meaning 
of criterion matrices and S-transformations can best be understood if the 
student has sufficient knowledge of the theory of unbiasedly estimable 
quantities. When criteria~ matrices are used to classify types of point
fields, he should know how the choice of covariance functions, used in 
these matrices, is related to the structure of real covariance matrices. 
The study of many of these subjects will be facilitated if the student has 
sufficient knowledge of linear algebra, if he is able to operate with vector 
bases and their matric tensors, linear spaces and their sub-spaces, the 
orthogonalisation of spaces, eigen-values (also in the generalised eigen
value problem) and eigen-vectors. The geometric interpretation of algebraic 
procedures is here very important. 

Although in modern education in statistics and adjustment, the emphasis should 
be transferred from the actual solution of the adjustment problem to an 
evaluation of the final results, a thorough knowledge of adjustment procedures 
as such (i.e. the five standard problems of Tienstra) is indispensable. If 
we require less skill in the solution of adjustment problems, then we should 
require a better understanding of the theory. 
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